SelectDB Cloud
SQL 手册
语句
Data-Manipulation-Statements
Load
STREAM-LOAD

STREAM-LOAD

Name

STREAM LOAD

Description

stream-load: load data to table in streaming

curl --location-trusted -u user:passwd [-H ""...] -T data.file -XPUT http://fe_host:http_port/api/{db}/{table}/_stream_load

该语句用于向指定的 table 导入数据,与普通 Load 区别是,这种导入方式是同步导入。

​ 这种导入方式仍然能够保证一批导入任务的原子性,要么全部数据导入成功,要么全部失败。

​ 该操作会同时更新和此 base table 相关的 rollup table 的数据。

​ 这是一个同步操作,整个数据导入工作完成后返回给用户导入结果。

​ 当前支持 HTTP chunked 与非 chunked 上传两种方式,对于非 chunked 方式,必须要有 Content-Length 来标示上传内容长度,这样能够保证数据的完整性。

​ 另外,用户最好设置 Expect Header 字段内容 100-continue,这样可以在某些出错场景下避免不必要的数据传输。

参数介绍: 用户可以通过 HTTP 的 Header 部分来传入导入参数

  1. label: 一次导入的标签,相同标签的数据无法多次导入。用户可以通过指定 Label 的方式来避免一份数据重复导入的问题。

    当前 Doris 内部保留 30 分钟内最近成功的 label。

  2. column_separator:用于指定导入文件中的列分隔符,默认为\t。如果是不可见字符,则需要加\x 作为前缀,使用十六进制来表示分隔符。

    ​ 如 hive 文件的分隔符\x01,需要指定为-H "column_separator:\x01"。

    ​ 可以使用多个字符的组合作为列分隔符。

  3. line_delimiter:用于指定导入文件中的换行符,默认为\n。可以使用做多个字符的组合作为换行符。

  4. columns:用于指定导入文件中的列和 table 中的列的对应关系。如果源文件中的列正好对应表中的内容,那么是不需要指定这个字段的内容的。

    如果源文件与表 schema 不对应,那么需要这个字段进行一些数据转换。这里有两种形式 column,一种是直接对应导入文件中的字段,直接使用字段名表示;

    ​ 一种是衍生列,语法为 column_name = expression。举几个例子帮助理解。

    ​ 例 1: 表中有 3 个列“c1, c2, c3”,源文件中的三个列一次对应的是"c3,c2,c1"; 那么需要指定-H "columns: c3, c2, c1"

    ​ 例 2: 表中有 3 个列“c1, c2, c3", 源文件中前三列依次对应,但是有多余 1 列;那么需要指定-H "columns: c1, c2, c3, xxx";

    ​ 最后一个列随意指定个名称占位即可

    ​ 例 3: 表中有 3 个列“year, month, day"三个列,源文件中只有一个时间列,为”2018-06-01 01:02:03“格式;

    ​ 那么可以指定-H "columns: col, year = year(col), month=month(col), day=day(col)"完成导入

  5. where: 用于抽取部分数据。用户如果有需要将不需要的数据过滤掉,那么可以通过设定这个选项来达到。

    例 1: 只导入大于 k1 列等于 20180601 的数据,那么可以在导入时候指定-H "where: k1 = 20180601"

  6. max_filter_ratio:最大容忍可过滤(数据不规范等原因)的数据比例。默认零容忍。数据不规范不包括通过 where 条件过滤掉的行。

  7. partitions: 用于指定这次导入所设计的 partition。如果用户能够确定数据对应的 partition,推荐指定该项。不满足这些分区的数据将被过滤掉。

    比如指定导入到 p1, p2 分区,-H "partitions: p1, p2"

  8. timeout: 指定导入的超时时间。单位秒。默认是 600 秒。可设置范围为 1 秒 ~ 259200 秒。

  9. strict_mode: 用户指定此次导入是否开启严格模式,默认为关闭。开启方式为 -H "strict_mode: true"。

  10. timezone: 指定本次导入所使用的时区。默认为东八区。该参数会影响所有导入涉及的和时区有关的函数结果。

  11. exec_mem_limit: 导入内存限制。默认为 2GB。单位为字节。

  12. format: 指定导入数据格式,默认是 csv,也支持:csv_with_names(支持 csv 文件行首过滤),csv_with_names_and_types(支持 csv 文件前两行过滤) 或 json 格式。

  13. jsonpaths: 导入 json 方式分为:简单模式和匹配模式。

    简单模式:没有设置 jsonpaths 参数即为简单模式,这种模式下要求 json 数据是对象类型,例如:

    {"k1":1, "k2":2, "k3":"hello"},其中k1,k2,k3是列名字。

    匹配模式:用于 json 数据相对复杂,需要通过 jsonpaths 参数匹配对应的 value。

  14. strip_outer_array: 布尔类型,为 true 表示 json 数据以数组对象开始且将数组对象中进行展平,默认值是 false。例如:

        [
         {"k1" : 1, "v1" : 2},
         {"k1" : 3, "v1" : 4}
        ]
        当strip_outer_array为true,最后导入到doris中会生成两行数据。
  15. json_root: json_root 为合法的 jsonpath 字符串,用于指定 json document 的根节点,默认值为""。

  16. merge_type: 数据的合并类型,一共支持三种类型 APPEND、DELETE、MERGE 其中,APPEND 是默认值,表示这批数据全部需要追加到现有数据中,DELETE 表示删除与这批数据 key 相同的所有行,MERGE 语义 需要与 delete 条件联合使用,表示满足 delete 条件的数据按照 DELETE 语义处理其余的按照 APPEND 语义处理, 示例:-H "merge_type: MERGE" -H "delete: flag=1"

  17. delete: 仅在 MERGE 下有意义, 表示数据的删除条件 function_column.sequence_col: 只适用于 UNIQUE_KEYS,相同 key 列下,保证 value 列按照 source_sequence 列进行 REPLACE, source_sequence 可以是数据源中的列,也可以是表结构中的一列。

  18. fuzzy_parse: 布尔类型,为 true 表示 json 将以第一行为 schema 进行解析,开启这个选项可以提高 json 导入效率,但是要求所有 json 对象的 key 的顺序和第一行一致, 默认为 false,仅用于 json 格式

  19. num_as_string: 布尔类型,为 true 表示在解析 json 数据时会将数字类型转为字符串,然后在确保不会出现精度丢失的情况下进行导入。

  20. read_json_by_line: 布尔类型,为 true 表示支持每行读取一个 json 对象,默认值为 false。

  21. send_batch_parallelism: 整型,用于设置发送批处理数据的并行度,如果并行度的值超过 BE 配置中的 max_send_batch_parallelism_per_job,那么作为协调点的 BE 将使用 max_send_batch_parallelism_per_job 的值。

  22. hidden_columns: 用于指定导入数据中包含的隐藏列,在 Header 中不包含 columns 时生效,多个 hidden column 用逗号分割。

         hidden_columns: __DORIS_DELETE_SIGN__,__DORIS_SEQUENCE_COL__
         系统会使用用户指定的数据导入数据。在上述用例中,导入数据中最后一列数据为__DORIS_SEQUENCE_COL__。
  23. load_to_single_tablet: 布尔类型,为 true 表示支持一个任务只导入数据到对应分区的一个 tablet,默认值为 false,该参数只允许在对带有 random 分区的 olap 表导数的时候设置。

    RETURN VALUES 导入完成后,会以 Json 格式返回这次导入的相关内容。当前包括以下字段 Status: 导入最后的状态。 Success:表示导入成功,数据已经可见; Publish Timeout:表述导入作业已经成功 Commit,但是由于某种原因并不能立即可见。用户可以视作已经成功不必重试导入 Label Already Exists: 表明该 Label 已经被其他作业占用,可能是导入成功,也可能是正在导入。 用户需要通过 get label state 命令来确定后续的操作 其他:此次导入失败,用户可以指定 Label 重试此次作业 Message: 导入状态详细的说明。失败时会返回具体的失败原因。 NumberTotalRows: 从数据流中读取到的总行数 NumberLoadedRows: 此次导入的数据行数,只有在 Success 时有效 NumberFilteredRows: 此次导入过滤掉的行数,即数据质量不合格的行数 NumberUnselectedRows: 此次导入,通过 where 条件被过滤掉的行数 LoadBytes: 此次导入的源文件数据量大小 LoadTimeMs: 此次导入所用的时间 BeginTxnTimeMs: 向 Fe 请求开始一个事务所花费的时间,单位毫秒。 StreamLoadPutTimeMs: 向 Fe 请求获取导入数据执行计划所花费的时间,单位毫秒。 ReadDataTimeMs: 读取数据所花费的时间,单位毫秒。 WriteDataTimeMs: 执行写入数据操作所花费的时间,单位毫秒。 CommitAndPublishTimeMs: 向 Fe 请求提交并且发布事务所花费的时间,单位毫秒。 ErrorURL: 被过滤数据的具体内容,仅保留前 1000 条

ERRORS: 可以通过以下语句查看导入错误详细信息:

   ```sql
    SHOW LOAD WARNINGS ON 'url'
   ```

其中 url 为 ErrorURL 给出的 url。

23: compress_type

指定文件的压缩格式。目前只支持 csv 文件的压缩。支持 gz, lzo, bz2, lz4, lzop, deflate 压缩格式。

Example

  1. 将本地文件'testData'中的数据导入到数据库'testDb'中'testTbl'的表,使用 Label 用于去重。指定超时时间为 100 秒

        curl --location-trusted -u root -H "label:123" -H "timeout:100" -T testData http://host:port/api/testDb/testTbl/_stream_load
  2. 将本地文件'testData'中的数据导入到数据库'testDb'中'testTbl'的表,使用 Label 用于去重, 并且只导入 k1 等于 20180601 的数据 curl --location-trusted -u root -H "label:123" -H "where: k1=20180601" -T testData http://host:port/api/testDb/testTbl/_stream_load

  3. 将本地文件'testData'中的数据导入到数据库'testDb'中'testTbl'的表, 允许 20%的错误率(用户是 defalut_cluster 中的) curl --location-trusted -u root -H "label:123" -H "max_filter_ratio:0.2" -T testData http://host:port/api/testDb/testTbl/_stream_load

  4. 将本地文件'testData'中的数据导入到数据库'testDb'中'testTbl'的表, 允许 20%的错误率,并且指定文件的列名(用户是 defalut_cluster 中的) curl --location-trusted -u root -H "label:123" -H "max_filter_ratio:0.2" -H "columns: k2, k1, v1" -T testData http://host:port/api/testDb/testTbl/_stream_load

  5. 将本地文件'testData'中的数据导入到数据库'testDb'中'testTbl'的表中的 p1, p2 分区, 允许 20%的错误率。 curl --location-trusted -u root -H "label:123" -H "max_filter_ratio:0.2" -H "partitions: p1, p2" -T testData http://host:port/api/testDb/testTbl/_stream_load

  6. 使用 streaming 方式导入(用户是 defalut_cluster 中的) seq 1 10 | awk '{OFS="\t"}{print $1, $1 * 10}' | curl --location-trusted -u root -T - http://host:port/api/testDb/testTbl/_stream_load

  7. 导入含有 HLL 列的表,可以是表中的列或者数据中的列用于生成 HLL 列,也可使用 hll_empty 补充数据中没有的列 curl --location-trusted -u root -H "columns: k1, k2, v1=hll_hash(k1), v2=hll_empty()" -T testData http://host:port/api/testDb/testTbl/_stream_load

  8. 导入数据进行严格模式过滤,并设置时区为 Africa/Abidjan curl --location-trusted -u root -H "strict_mode: true" -H "timezone: Africa/Abidjan" -T testData http://host:port/api/testDb/testTbl/_stream_load

  9. 导入含有 BITMAP 列的表,可以是表中的列或者数据中的列用于生成 BITMAP 列,也可以使用 bitmap_empty 填充空的 Bitmap

     curl --location-trusted -u root -H "columns: k1, k2, v1=to_bitmap(k1), v2=bitmap_empty()" -T testData http://host:port/api/testDb/testTbl/_stream_load
     ```
    
  10. 简单模式,导入 json 数据 表结构:

category varchar(512) NULL COMMENT "", author varchar(512) NULL COMMENT "", title varchar(512) NULL COMMENT "", price double NULL COMMENT ""

json 数据格式:

{"category":"C++","author":"avc","title":"C++ primer","price":895}

导入命令:

curl --location-trusted -u root  -H "label:123" -H "format: json" -T testData http://host:port/api/testDb/testTbl/_stream_load

为了提升吞吐量,支持一次性导入多条 json 数据,每行为一个 json 对象,默认使用\n 作为换行符,需要将 read_json_by_line 设置为 true,json 数据格式如下:

{"category":"C++","author":"avc","title":"C++ primer","price":89.5}
{"category":"Java","author":"avc","title":"Effective Java","price":95}
{"category":"Linux","author":"avc","title":"Linux kernel","price":195}
  1. 匹配模式,导入 json 数据 json 数据格式:
[
{"category":"xuxb111","author":"1avc","title":"SayingsoftheCentury","price":895},{"category":"xuxb222","author":"2avc","title":"SayingsoftheCentury","price":895},
{"category":"xuxb333","author":"3avc","title":"SayingsoftheCentury","price":895}
]

通过指定 jsonpath 进行精准导入,例如只导入 category、author、price 三个属性

curl --location-trusted -u root  -H "columns: category, price, author" -H "label:123" -H "format: json" -H "jsonpaths: [\"$.category\",\"$.price\",\"$.author\"]" -H "strip_outer_array: true" -T testData http://host:port/api/testDb/testTbl/_stream_load

说明: 1)如果 json 数据是以数组开始,并且数组中每个对象是一条记录,则需要将 strip_outer_array 设置成 true,表示展平数组。 2)如果 json 数据是以数组开始,并且数组中每个对象是一条记录,在设置 jsonpath 时,我们的 ROOT 节点实际上是数组中对象。

  1. 用户指定 json 根节点 json 数据格式:
{
 "RECORDS":[
{"category":"11","title":"SayingsoftheCentury","price":895,"timestamp":1589191587},
{"category":"22","author":"2avc","price":895,"timestamp":1589191487},
{"category":"33","author":"3avc","title":"SayingsoftheCentury","timestamp":1589191387}
]
}

通过指定 jsonpath 进行精准导入,例如只导入 category、author、price 三个属性

curl --location-trusted -u root  -H "columns: category, price, author" -H "label:123" -H "format: json" -H "jsonpaths: [\"$.category\",\"$.price\",\"$.author\"]" -H "strip_outer_array: true" -H "json_root: $.RECORDS" -T testData http://host:port/api/testDb/testTbl/_stream_load
  1. 删除与这批导入 key 相同的数据
curl --location-trusted -u root -H "merge_type: DELETE" -T testData http://host:port/api/testDb/testTbl/_stream_load
  1. 将这批数据中与 flag 列为 ture 的数据相匹配的列删除,其他行正常追加
curl --location-trusted -u root: -H "column_separator:," -H "columns: siteid, citycode, username, pv, flag" -H "merge_type: MERGE" -H "delete: flag=1"  -T testData http://host:port/api/testDb/testTbl/_stream_load
  1. 导入数据到含有 sequence 列的 UNIQUE_KEYS 表中
curl --location-trusted -u root -H "columns: k1,k2,source_sequence,v1,v2" -H "function_column.sequence_col: source_sequence" -T testData http://host:port/api/testDb/testTbl/_stream_load

Keywords

STREAM, LOAD

Best Practice

  1. 查看导入任务状态

    Stream Load 是一个同步导入过程,语句执行成功即代表数据导入成功。导入的执行结果会通过 HTTP 返回值同步返回。并以 Json 格式展示。示例如下:

    {
        "TxnId": 17,
        "Label": "707717c0-271a-44c5-be0b-4e71bfeacaa5",
        "Status": "Success",
        "Message": "OK",
        "NumberTotalRows": 5,
        "NumberLoadedRows": 5,
        "NumberFilteredRows": 0,
        "NumberUnselectedRows": 0,
        "LoadBytes": 28,
        "LoadTimeMs": 27,
        "BeginTxnTimeMs": 0,
        "StreamLoadPutTimeMs": 2,
        "ReadDataTimeMs": 0,
        "WriteDataTimeMs": 3,
        "CommitAndPublishTimeMs": 18
    }

    字段释义如下:

    • TxnId:导入事务 ID,由系统自动生成,全局唯一。

    • Label:导入 Label,如果没有指定,则系统会生成一个 UUID。

    • Status:

      导入结果。有如下取值:

      • Success:表示导入成功,并且数据已经可见。
      • Publish Timeout:该状态也表示导入已经完成,只是数据可能会延迟可见。
      • Label Already Exists:Label 重复,需更换 Label。
      • Fail:导入失败。
    • ExistingJobStatus:

      已存在的 Label 对应的导入作业的状态。

      这个字段只有在当 Status 为 "Label Already Exists" 是才会显示。用户可以通过这个状态,知晓已存在 Label 对应的导入作业的状态。"RUNNING" 表示作业还在执行,"FINISHED" 表示作业成功。

    • Message:导入错误信息。

    • NumberTotalRows:导入总处理的行数。

    • NumberLoadedRows:成功导入的行数。

    • NumberFilteredRows:数据质量不合格的行数。

    • NumberUnselectedRows:被 where 条件过滤的行数。

    • LoadBytes:导入的字节数。

    • LoadTimeMs:导入完成时间。单位毫秒。

    • BeginTxnTimeMs:向 FE 请求开始一个事务所花费的时间,单位毫秒。

    • StreamLoadPutTimeMs:向 FE 请求获取导入数据执行计划所花费的时间,单位毫秒。

    • ReadDataTimeMs:读取数据所花费的时间,单位毫秒。

    • WriteDataTimeMs:执行写入数据操作所花费的时间,单位毫秒。

    • CommitAndPublishTimeMs:向 Fe 请求提交并且发布事务所花费的时间,单位毫秒。

    • ErrorURL:如果有数据质量问题,通过访问这个 URL 查看具体错误行。

  2. 如何正确提交 Stream Load 作业和处理返回结果。

    Stream Load 是同步导入操作,因此用户需同步等待命令的返回结果,并根据返回结果决定下一步处理方式。

    用户首要关注的是返回结果中的 Status 字段。

    如果为 Success,则一切正常,可以进行之后的其他操作。

    如果返回结果出现大量的 Publish Timeout,则可能说明目前集群某些资源(如 IO)紧张导致导入的数据无法最终生效。Publish Timeout 状态的导入任务已经成功,无需重试,但此时建议减缓或停止新导入任务的提交,并观察集群负载情况。

    如果返回结果为 Fail,则说明导入失败,需根据具体原因查看问题。解决后,可以使用相同的 Label 重试。

    在某些情况下,用户的 HTTP 连接可能会异常断开导致无法获取最终的返回结果。此时可以使用相同的 Label 重新提交导入任务,重新提交的任务可能有如下结果:

    1. Status 状态为 SuccessFail 或者 Publish Timeout。此时按照正常的流程处理即可。
    2. Status 状态为 Label Already Exists。则此时需继续查看 ExistingJobStatus 字段。如果该字段值为 FINISHED,则表示这个 Label 对应的导入任务已经成功,无需在重试。如果为 RUNNING,则表示这个 Label 对应的导入任务依然在运行,则此时需每间隔一段时间(如 10 秒),使用相同的 Label 继续重复提交,直到 Status 不为 Label Already Exists,或者 ExistingJobStatus 字段值为 FINISHED 为止。
  3. 取消导入任务

    已提交切尚未结束的导入任务可以通过 CANCEL LOAD 命令取消。取消后,已写入的数据也会回滚,不会生效。

  4. Label、导入事务、多表原子性

    Doris 中所有导入任务都是原子生效的。并且在同一个导入任务中对多张表的导入也能够保证原子性。同时,Doris 还可以通过 Label 的机制来保证数据导入的不丢不重。具体说明可以参阅 导入事务和原子性 (opens in a new tab) 文档。

  5. 列映射、衍生列和过滤

    Doris 可以在导入语句中支持非常丰富的列转换和过滤操作。支持绝大多数内置函数和 UDF。关于如何正确的使用这个功能,可参阅 列的映射,转换与过滤 (opens in a new tab) 文档。

  6. 错误数据过滤

    Doris 的导入任务可以容忍一部分格式错误的数据。容忍率通过 max_filter_ratio 设置。默认为 0,即表示当有一条错误数据时,整个导入任务将会失败。如果用户希望忽略部分有问题的数据行,可以将次参数设置为 0~1 之间的数值,Doris 会自动跳过哪些数据格式不正确的行。

    关于容忍率的一些计算方式,可以参阅 列的映射,转换与过滤 (opens in a new tab) 文档。

  7. 严格模式

    strict_mode 属性用于设置导入任务是否运行在严格模式下。该格式会对列映射、转换和过滤的结果产生影响。关于严格模式的具体说明,可参阅 严格模式 (opens in a new tab) 文档。

  8. 超时时间

    Stream Load 的默认超时时间为 10 分钟。从任务提交开始算起。如果在超时时间内没有完成,则任务会失败。

  9. 数据量和任务数限制

    Stream Load 适合导入几个 GB 以内的数据,因为数据为单线程传输处理,因此导入过大的数据性能得不到保证。当有大量本地数据需要导入时,可以并行提交多个导入任务。

    Doris 同时会限制集群内同时运行的导入任务数量,通常在 10-20 个不等。之后提交的导入作业会被拒绝。

© 2023 北京飞轮数据科技有限公司 京ICP备2022004029号 | Apache、Apache Doris 以及相关开源项目名称均为 Apache 基金会商标